
 1

Energy-Aware Fault Tolerance in Fixed-Priority Real-Time Embedded Systems*

Ying Zhang, Krishnendu Chakrabarty and Vishnu Swaminathan
Department of Electrical & Computer Engineering

Duke University, Durham, NC 27708, USA

Abstract
We investigate an integrated approach to fault tolerance and
dynamic power management in real-time embedded systems. Fault
tolerance is achieved via checkpointing and power management is
carried out using dynamic voltage scaling (DVS). We present
feasibility-of-scheduling tests for checkpointing schemes for a
constant processor speed as well as for variable processor speeds.
DVS is then carried out on the basis of these feasibility analyses.
Experimental results show that compared to fault-oblivious
methods, the proposed approach significantly reduces power
consumption and guarantees timely task completion in the presence
of faults.

1. Introduction
 Fault tolerance techniques are needed to ensure the
dependability of embedded systems that operate in harsh
environmental conditions. These embedded systems also operate
under severe energy limitations. In addition, many embedded
systems execute real-time applications that require strict adherence
to task deadlines. In this paper, we investigate an integrated
approach that provides fault tolerance and dynamic power
management (DPM) in hard real-time embedded systems. We
extend a recent energy-aware adaptive checkpointing scheme that
considers a single task in a soft real-time system [1].
 Dynamic voltage scaling (DVS) is a popular technique for
reducing power consumption during system operation [2, 3]. Fault
tolerance is typically achieved in real-time systems through
checkpointing [4]. At each checkpoint, the system saves its state in
a secure device. When a fault is detected, the system rolls back to
the most recent checkpoint and resumes normal execution. The
checkpointing interval, i.e., duration between two consecutive
checkpoints, must be carefully chosen to balance checkpointing
cost with the re-execution time. *
 DPM and fault tolerance for embedded real-time systems have
largely been studied as separate problems in the literature. DVS
techniques for power management do not consider fault tolerance
[2, 3], and checkpoint placement strategies for fault tolerance do
not address DPM [5, 6]. It is only recently that an attempt has been
made to combine fault tolerance with DPM [1].
 There are three main reasons for combining DPM with fault
tolerance in real-time embedded systems. Increased die
temperatures due to higher processor speeds create thermal stresses
on the die and undermine system reliability. In order to mitigate
reliability problems caused by high die temperatures, we can either
lower energy consumption through DPM techniques such as DVS,
or we can adopt fault tolerance techniques such as checkpointing.
Better still, a combination of DVS and checkpointing can be used.

*This research was sponsored in part by DARPA, and administered by the
Army Research Office under Emergent Surveillance Plexus MURI Award
No. DAAD19-01-1-0504. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the sponsoring agencies.

 The second reason is motivated by the need to meet the task
deadlines in real-time systems. If faults occur frequently, the
processor speed can be scaled up dynamically (within limits
imposed by higher die temperatures) and more slack can be
provided to the task, which allows more time for rollback recovery.
 The third motivation arises from shrinking process technologies
in the nanotechnology realm. Lower processor voltages are likely
to lead to lower noise margins and more transient faults, caused in
part by single-event upsets.
 We first present feasibility tests for fixed-priority real-time
systems with checkpointing under constant processor speed.
Following this, we extend these feasibility tests to variable-speed
processors. Based on the results of the feasibility analyses, an on-
line dynamic speed-scaling scheme is further developed to reduce
energy during task execution. The proposed approach is compared
with a fault-oblivious DVS scheme in the presence of faults.

2. Feasibility Analysis Under Constant Speed
 We are given a set Γ = {τ1, τ2, …, τn} of n periodic real-time
tasks, where task τi is modeled by a tuple τi = (Ti, Di, Ei). The
elements of the tuple are defined as follows: Ti is the period of τi,
and Di is its deadline (Di ≤ Ti); Ei is the execution time of τi under
fault-free conditions. Let the checkpointing cost be C. We make the
following assumptions related to task execution and fault arrivals:
(i) The task set Γ is scheduled using fixed-priority methods such as
the rate-monotonic scheme [7]; (ii) the task set Γ is schedulable
under fault free conditions; (iii) the priority of tasks are in
decreasing order of the index i, i.e., task τi has higher priority than
task τj if i < j; (iv) each instance of the task is released at the
beginning of the period; (v) the checkpointing intervals for a task
are equal; (vi) the times for rollback and state restoration are zero;
(vii) faults are detected as soon as they occur, and (viii) no faults
occur during checkpointing and rollback recovery.
 In [8], a feasibility analysis is provided under the assumption
that two successive faults arrive with a minimum inter-arrival time
TF. This is not practical for realistic applications, where the fault
occurrence can be bursty or memoryless. Therefore, we focus here
on tolerating up to a given number of faults during task execution.
No additional assumption is made regarding fault arrivals.
 Since the task set is periodic, the total execution time can be
very high if we consider a large number of periods. We therefore
need to identify an appropriate k-fault-tolerant condition for shorter
time duration. Here we provide two solutions corresponding to two
different fault-tolerance requirements. One is to tolerate k faults for
each job, termed as job-oriented fault-tolerance; the other is to
tolerate k faults within a hyperperiod (defined as the least common
multiple of all the task periods [7]), termed as hyperperiod-oriented
fault-tolerance.
 We first consider the case of a single job. Suppose m
checkpoints are inserted equidistantly to tolerate k faults in one job.
The worst-case response time R for the job is composed of three
terms: the task execution time E, the checkpointing cost mC, and
the recovery cost kE/(m+1), i.e.)1/(+++= mkEmCER . To

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Energy-Aware Fault Tolerance in Fixed-Priority Real-Time Embedded
Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

satisfy the deadline constraint, we must have
DmkEmCE ≤+++)1/(.

 Let DmkEmCEmf −+++=)1/()(. The minimum value of

f(m) is obtained for m = 1/0 −= CkEm . Since m is a non-negative

integer, we have  )0,1(/max0 −= CkEm .
 If f(m0) ≤ 0, there exists equidistant checkpointing schemes for
k-fault-tolerance, and the response time is minimum when m0
checkpoints are inserted. If f(m0) > 0, then no equidistant
checkpointing schemes exists for tolerating up to k faults.
 The feasibility analysis for more than one job is based on the
time-demand analysis for fixed-priority scheduling [7]. The steps in
the analysis are as following:
 (1) Compute the response time Ri for τi according to the

equation:  ∑
−

=
+=

1

1
/

i

h hhiii ETRER . Here Th and Eh are the period

and the execution time of a task τh with higher priority than τi. This
equation can be solved by forming a recurrence relation:

  h

i

h h
j

ii
j

i ETRER ∑
−

=

+ +=
1

1

)()1(/ . (1)

(2) The iteration is terminated either when)()1(j
i

j
i RR =+ and

i
j

i DR ≤)(for some j or when i
j

i DR >+)1(, whichever occurs
sooner. In the former case, τi is schedulable; in the later case, τi is
not schedulable.
 According to [7], the time complexity of the time-demand
analysis for each task is O(nR), where R is the ratio of the largest
period to the smallest period.

2.1 Job-oriented fault-tolerance: tolerating k faults in each job
 In this case, we require that the task set can meet the deadline
requirement under the condition that at most k faults occur during
the execution of each job.
 Under the worst-case condition, the additional time due to
checkpointing and recovery should be incorporated. When there
are mj equidistant checkpoints for each instance of τj, we have:

 ∑
−
= +++++++= 1
1))1/((/))1/((i

h hhhhhiiiiii mkECmETRmkECmER
 To minimize all response times, we must have:

 )1()0,1(/max* niCkEm ii ≤≤−= . Then we can employ the
recurrence equation as follows:

 ∑
−

=

+ +++++++=
1

1

)()1())1/((/))1/((
i

h hhhhh
j

iiiii
j

i mkECmETRmkECmER .
 When)()1(j

i
j

i RR =+ and i
j

i DR ≤)(for some j, τi is

schedulable; when i
j

i DR >+)1(, τi is not schedulable. The total time

complexity here is)(2RnO , where R is the ratio of the largest
period to the smallest period.
Example 1: Consider a task set composed of two tasks: τ1 = (60,
18, 7) and τ2 = (80, 34, 8), and let k = 3, C = 1. Then m1

* = 4 and
m2

* = 4. After applying the recurrence equation, we get the
response times: R1 = 15.2 < 18; R2 = 33 < 34. Thus checkpointing is
feasible for this task set if up to three faults occur during each job.
Next we examine the case of k = 4. For this case m1

* = 5 and m2
* =

5. The response times are: R1 = 16.7 < 18 and R2 = 35 > 34. As a
result, checkpointing is not feasible if up to four faults need to be
tolerated for each job.

2.2 Hyperperiod-oriented fault-tolerance: tolerating k faults in
a hyperperiod
 In [8], an algorithm is presented to determine the checkpointing
interval under the assumption that two successive faults arrive with
a minimum inter-arrival time TF. Let Fj, ij ≤≤1 , be the extra
computation time needed by τj, ij ≤≤1 , if one fault occurs during
the execution. When there are mj equidistant checkpoints for τj, the
response time Ri for τi is expressed as follows in [8]:

    }{max/)(/)(1
1
1 jijFi

i
h hhhiiii FTRCmETRCmER ≤≤
−
= ++++= ∑ ,

where)1/(+= jjj mEF .
 The checkpoint is examined starting from high-priority tasks to
low-priority tasks. For each task τj, the algorithm tries to reduce the
response time by reducing the maximum additional computation
time, i.e., }{max1 jij F≤≤ . The details in [8] are as follows:

(1) Initially 0=im for ni ≤≤1 .
(2) Starting from the highest-priority task τ1, calculate the
minimum number of checkpoints m1 required to make it
schedulable.
(3) In decreasing order of task priorities, calculate the response
time Ri of task τi. If ii DR ≤ , move to the next task; otherwise Ri
needs to be reduced further. The only way to reduce Ri is to add
more checkpoints to decrease the re-execution time caused by
faults, i.e., Fj, for ij ≤≤1 . In fact, the parameter }{max1 jij F≤≤ is
relevant here and should be reduced. The task τ* that contributes
the most to the task re-execution time is found and one more
checkpoint is added to τ*. Then Ri is recalculated. This process is
repeated until either ii DR ≤ or the deadline Di is exceeded.
 While the schedulability test in [8] provides useful guidelines
on task schedulability in the presence of faults, its drawback is that
two key issues that affect schedulability are not addressed.
1. Checkpoints are added to the higher-priority tasks in certain
iterations in order to satisfy deadline constraints for all the tasks.
These higher-priority tasks, however, have met their deadline in
earlier iterations. The addition of more checkpoints to them
inevitably changes their response times. As a result, it is necessary
to trace back to re-calculate their response times and adjust their
checkpoints. This issue has not been addressed in [8].
2. It is necessary to determine a bound on the number of
checkpoints beyond which the addition of checkpoints does not
improve schedulability. In [8], the schedulability test concludes that
τi is not schedulable once Ri increases during the addition of
checkpoints. However, this does not always hold. We present a
counterexample below.
Example 2: Consider two tasks τ1 = (100, 18, 7.999) and τ2 =
(101, 21, 8), and let TF = 102, C = 0.1. We follow the steps from
[8] as shown below:
(1) Initially m1 = m2 = 0, and F1 = 7.999, F2 = 8;
(2) Next τ1 is examined: R1 =15.998 < 18. No checkpoints are
needed for τ1. Thus m1 = m2 =0.
(3) Next τ2 is examined: R2 = 23.999 > 21. Since F2 > F1, one
checkpoint is added to τ2, thus m1 = 0 and m2 =1. Then F1 = 7.999,
F2 = 4 and 999.7}{max 21 =≤≤ jj F . We recalculate the response
time R2 = 24.098 > 23.999. According to [8], τ2 is not schedulable.
However, this is not correct. We continue the above step and find
F1 > F2, then one more checkpoint is added to τ1; as a result m1 = 1,
m2 = 1. Then F1 = 9995.3)11/(999.7 =+ , F2 = 4, and

 3

4}{max 21 =≤≤ jj F . We recalculate the response time of τ1 and τ2:
R1 = 12.0985 < 18 and R2 = 20.199 < 21, which implies that both
tasks are schedulable.
 We require here that the tasks meet their deadlines under the
condition that at most k faults occur during a hyperperiod. Based on
the schedulability test in [8], we solve the two aforementioned
problems as follows.
 The response time Ri for τi is expressed as:

  }{max)(/)(1
1
1 jij

i
h hhhiiii FkCmETRCmER ≤≤
−
= ++++= ∑ ,

where)1/(+= jjj mEF .
 The first problem can be solved using a recursive method. Any
time we increase the number of checkpoints for a task, all the
lower-priority tasks need to be re-examined. We solve the second
problem by determining a bound on the number of checkpoints
such that if the task set cannot be made schedulable using this
number of checkpoints, it cannot be scheduled by adding more
checkpoints. Both the checkpointing cost and the timing constraints
must be taken into account.
(1) Analysis of a bound based on checkpointing tradeoffs
 The effect of adding more checkpoints is two-fold. First it
increases the execution time due to the checkpoint cost, which runs
contrary to the goal of reducing the response time. On the other
hand, it decreases re-execution due to a fault, which helps in
reducing the response time. Suppose the task execution time is E
and m checkpoints have already been added. If another checkpoint
is now added, the reduction of re-execution time under the k-fault-
tolerance requirement is simply:

)]2)(1/[()2/()1/(++=+−+ mmkEmkEmkE .
 We combine the two impacts of checkpointing on the re-
execution time to define the tradeoff function tr(m) as:

)]2)(1/[()(++−= mmkECmtr .
 If 0)(<mtr , then adding one more checkpoint can potentially
reduce the response time; otherwise, it is not helpful since it
increases the task re-execution time due to the k faults.
 For each task τi with mi checkpoints, we can calculate the
tradeoff function tri(mi). Solving for 0)'(=ii mtr , we get:

2/)/413(' CkEm ii ++−= for ni ≤≤1 . Since 0'≥im , we

further express it as:  )0,2/)/413(max(' CkEm ii ++−= for

ni ≤≤1 . This gives an upper bound on the number of checkpoints,
which is based on the tradeoff function.
(2) Analysis of a bound based on timing constraints
 Under fault-free conditions, the response time 0

iR for task τi

can be easily obtained. After incorporating the checkpointing cost
and timing constraints, we have: iii DCmR ≤+0 , which implies that

CRDm iii /)(0−≤ . Let  CRDm iii /)(0# −= .
 Combining the two bounds, we define

)1(),'min(#* nimmm iii ≤≤= . Then mi
* is a tighter upper bound

on the number of checkpoints required to make τi schedulable.
 A checkpointing algorithm ADV-CP for off-line feasibility
analysis is described in Figure 1, which takes as an input parameter
the real-time task set Γ. All tasks are initially set unschedulable.
The recursive checkpointing procedure CP(p,q) is described in
Figure 2, where p and q are the lowest and highest index for the
task subset under consideration.

 The recursive execution of),(qpCP takes ∑ =

n

i imRnO
1

*2)(

time. Let ∑ =
=

n

i imM
1

** . Adding all the cost together, the total

complexity for the feasibility test & checkpointing procedure is
)(*2RMnO , which is only quadratic in the number of tasks n.

Furthermore, we note that the complexity can be reduced if we can
make *M as small as possible. That is why we combine both the
tradeoff function and timing constraints to obtain a relatively tight
bound for mi

*.

3. Feasibility Analysis with DVS
 We are given a variable-speed processor, which is equipped
with l speeds f1, f2, …, fl. In addition, fi < fj if i < j. Let c be the
number of clock cycles that a single checkpoint takes. We are also
given a set Γ = {τ1, τ2, …, τn} of n periodic real-time tasks, where
task τi is modeled by a tuple τi = (Ti, Di, Ei). The elements of the
tuple are defined as follows: Ti is the period of τi and Di is its
deadline (Di ≤ Ti); Ei is the number of computation cycles of τi
under fault-free conditions.
 In addition to the assumptions in Section 2, we assume the task
set Γ is schedulable under fault free conditions at the lowest speed.
For the sake of simplicity of presentation, we also assume without
loss of generality that speed switching does not incur extra cost in
terms of time and energy.
 We note that if supply voltage Vdd is used for a task with N
single-cycle instructions, the energy consumption can be expressed
as (α is a constant): ddNVNEng 2)(α= (2)
 We also note that the processor clock frequency f can be
expressed in terms of the supply voltage Vdd and threshold voltage
Vt as ddtdd VVVf /)(2−= β , where β is a constant.
 From above, we obtain Vdd as a function of f:

22))2/(())2/(()(tttdd VfVfVfV −+++= ββ (3)
 According to Equation (2), energy consumption is a function of

N and f:)(),(2 fNVfNEng ddα= , where Vdd(f) is expressed in
Equation (3). Here we assume Vt = 0 without loss of generality.
 In our proposed scheme, speed scaling can be done for a
particular application, i.e., all tasks for the application are assigned
the same speed, or at the task level, i.e., different tasks can be
assigned different speed. Speed scaling can also be carried out at
the job level, i.e., different jobs for a task can have different speeds.
Let s(τi) : τi → fj (1 ≤ i ≤ n, 1 ≤ j ≤ l) denote the speed scaling
function, which maps a task τi to speed fj.
 Our aim is to meet task deadlines deterministically, even
though k faults occur, while minimizing energy consumption. First,
we need to identify appropriate time duration to evaluate the energy
consumption. We consider the hyperperiod as the time duration.
Second, the criterion of minimizing energy consumption needs to
be clarified. Based on the application requirement, we can choose
either a best-case or a worst-case energy consumption value. By
best-case, we refer to the results obtained under the fault-free
condition, while worst-case refers to the results obtained when all k
faults occur. In our work, we focus on minimizing energy
consumption under the worst-case condition during a hyperperiod.
Let the hyperperiod denoted by Ht and the number of checkpoints
for τi denoted by mi; the total energy consumption during one
hyperperiod is expressed as:

∑ =
+++= n

i
iiiiii smkEcmEEngTHtengTotal

1
))(),1/(()/(_ τ (4)

 4

Procedure ADV-CP (Γ)
begin
1. for i = 1 to n do
 mi = 0; compute mi

*; Rj = ∞;
2. CP(1, n).
end

Figure 1: Advanced checkpointing procedure.
Procedure CP (p, q)
1. if (Rp ≤ Dp & Rp+1 ≤ Dp+1 & …& Rq ≤ Dq)
 return(“task subset schedulable”);
2. elseif (m1 > m1

* & m2 > m2
* & …& mq> mq

*)
 exit(“task set unschedulable”);
3. else{for j = p to q do{
 3.1 compute Rj;
 3.2 while (Rj > Dj) do{
 3.2.1 find h∈ [1, j] such that Fh = max(F1, F2, …, Fj);
 3.2.2 mh = mh + 1;
 3.2.3 Fh = Eh/(mh + 1);
 3.2.4 CP (h, j);}}}

Figure 2: Recursive checkpointing procedure.

 The off-line feasibility analysis with DVS provides two
important pieces of information: first, it provides the feasibility
analysis under the worst-case scenario; second, it provides static
results such as speed assignment and checkpoint interval, which
can be further used for on-line adjustment during task execution.

3.1 Job-oriented fault-tolerance with DVS
 The worst-case response time for task τi can be expressed as:

∑
−

=

+++








++++=

1

1)(
)1/(

)(
)1/(i

h h

hhhh

h

i

i

iiii
i s

mkEcmE
T
R

s
mkEcmER

ττ
 (5)

 To minimize all response times, we must have:

 )1()0,1(/max* niCkEm ii ≤≤−= . Then we can employ the
recurrence equation as follows:

∑
−

=

+ +++












++++=

1

1

)(
)1(

)(
)1/(

)(
)1/(i

h h

hhhh

h

j
i

i

iiiij
i s

mkEcmE
T

R
s

mkEcmER
ττ

 If)()1(j
i

j
i RR =+ and i

j
i DR ≤)(for some j, τi is schedulable; if

i
j

i DR >+)1(, τi is not schedulable.
 Since the optimal number of checkpoints is fixed a priori for
each task, we need to choose appropriate processor speeds to
satisfy the deadline constraint for each task.
(1) Application-level speed scaling: all tasks have the same speed.
Here all tasks have the same speed f* and s(τ1) = s(τ2) = … = s(τn)
= f*, where f* ∈ {f1, f2, …, fl}. Equation (5) is simplified as:

∑
−

=

+++








++++=

1

1
*

**

*

**)1/()1/(i

h

hhhh

h

iiiii
i f

mkEcmE
T
R

f
mkEcmER

 The iterative method described in Section 2.1 can be used here
to determine f*. To examine the feasibility for each task, all
possible speeds have to be tested. There are l possibilities in total.
The lowest speed that satisfies the timing constraints is selected to
minimize energy consumption.
(2) Task-level speed scaling: different tasks can have different
speeds. To obtain an optimal solution, we use an exhaustive
method. Since each task can be run at l speeds, there are ln possible
speed combinations for n tasks. For each speed combination, the
feasibility test is performed according to Equation (5). Meanwhile,
the energy consumption is calculated from Equation (4). The speed
combination that satisfies the timing constraints with the minimum

energy consumption is chosen as the optimal solution.

3.2 Hyperperiod-oriented fault-tolerance with DVS
 The worst-case response time for task τi can be expressed as:

  }{max)(/)(/)(/)(
1

1

1 jij

i

h hhhhiiiii FkscmETRscmER
≤≤

−

=
++++= ∑ ττ

where)]1)((/[+= jjjj msEF τ . (6)
(1) Application-level speed scaling: all tasks have the same speed.
Here all tasks have the same speed f* and s(τ1) = s(τ2) = … = s(τn)
= f*, where f* ∈ {f1, f2, …, fl}. Equation (6) is simplified as:

  }{max/)(//)(
1

1

1

**
jij

i

h hhhiiii FkfcmETRfcmER
≤≤

−

=
++++= ∑ ,

where)]1(/[* += jjj mfEF .
 In contrast to (1) in Section 3.1, we first fix the speed instead of
the number of checkpoints. For each given speed f*, we examine
the feasibility of the task set using the method in Section 2.2. If it is
schedulable, the corresponding number of checkpoints for each task
can be obtained. The energy consumption is calculated from
Equation (4). The lowest speed that satisfies the timing constraints
is selected to minimize energy consumption.
(2) Task-level speed scaling: different tasks can have different
speeds. To obtain an optimal solution, we use an exhaustive
method. Since each task can be run at l speeds, there are ln possible
speed combinations for n tasks. For each speed combination, the
feasibility test is performed according to Equation (6). The method
in Section 2.2 is employed and the corresponding number of
checkpoints is obtained. Meanwhile, the energy consumption is
calculated from Equation (4). The speed combination that satisfies
the timing constraints with the minimum energy consumption is
chosen as the optimal solution.

3.3 Job-level on-line speed scaling
 As discussed in Sections 3.1 and 3.2, the speed assignment and
the checkpointing interval are determined by the off-line feasibility
analysis. A static sequence of jobs is obtained and their timing
parameters such as release times and execution times are known a
priori under the worst case. However, if only such static measures
are used during run-time, it will not be possible to make use of idle
intervals. Clearly, further energy saving is possible through
additional on-line speed scaling.
 The on-line speed scaling procedure, done at the job-level, is
adaptive with respect to fault occurrence. It makes use of a simple
run-time adaptation mechanism. The key features are:
• Once a job completes, the release time of the next job is adjusted

dynamically during run-time.
• The processor is run at an appropriate speed such that either the

current job completes before its deadline, or before the static
release time of the next job, whichever is sooner.

4. Experimental Results
 In this section, we compare the performance of our energy-
aware fault-tolerance scheme with the DVS technique proposed in
[3], referred to as VSLP. Our goal here is to highlight the impact
of fault occurrences on a fault-oblivious DVS scheme.
 We use the following notation to refer to the various types of
schemes: (1) JFTA: job-oriented fault tolerance with application-
level speed scaling; (2) JFTT: job-oriented fault tolerance with
task-level speed scaling; (3) HFTA: hyperperiod-oriented fault
tolerance with application-level speed scaling; (4) HFTT:
hyperperiod-oriented fault-tolerance with task-level speed scaling.

 5

 Since the VSLP scheme as presented in [3] does not provide
fault tolerance, we assume that it simply re-executes a job when a
fault occurs. Furthermore, since JFTA is a special case of JFTT and
HFTA is a special case of HFTT, we compare VSLP with the JFTT
and HFTT schemes. For both cases, we first show that JFTT and
HFTT can schedule task sets even when VSLP cannot do so; we
then show that these schemes can save more energy via
checkpointing in the presence of faults.

4.1 JFTT vs. VSLP
 As pointed out in [8], a system of periodic preemptable tasks,
each of whose relative deadline D is equal to its period T, is
schedulable on one processor according to the rate monotonic
algorithm if and only if its total task utilization is equal to or less
than 1. In the presence of faults, since the re-execution takes extra
time and the total task utilization will be increased accordingly, a
task set that is schedulable under fault-free conditions may no
longer be schedulable. Here we construct a task set whose total
utilization is greater than 1 for VSLP under faulty conditions even
though the entire task set is executed with the highest speed, and
show that this task set is schedulable using JFTT.
 Suppose we are given three tasks τ1 = (12000, 12000, 2200), τ2
= (18000, 18000, 3000) and τ3 = (24000, 24000, 4000), and three
normalized processor speeds 1.0, 0.8 and 0.6. Let a single
checkpoint take c = 50 cycles. If only k = 1 fault occurs during each
job, the total utilization for VSLP under the highest speed is found
to be 1.033. This implies that VSLP cannot schedule the task set
when one or more faults occur during each job. However, the
experiments show that JFTT can tolerate up to 6 faults during each
job. The speed assignment (s1, s2, s3) and number of checkpoints
(m1, m2, m3) for τ1, τ2 and τ3, and total energy consumption are
shown in Table 1.
 Next we show that JFTT saves more energy than VSLP in the
presence of faults when both schemes are feasible. Consider three
tasks τ1 = (12000, 10000, 500), τ2 = (18000, 16000, 1000) and τ3 =
(24000, 22000, 2000), and three normalized processor speeds 1.0,
0.8 and 0.6. Let a single checkpoint take c = 50 cycles. The energy
saving for JFTT over VSLP is shown in Table 2. Compared to
VSLP, JFTT can save up to 75% energy in the presence of faults.
 To demonstrate the effect of checkpointing cost, we fix the
value of k and change the value of c for the same task set used in
Table 2. The results are shown in Table 3.

4.2 HFTT vs. VSLP
 We now show that HFTT can schedule task sets in the presence
of faults, even when VSLP fails to do so. Suppose we are given
three tasks τ1 = (12000, 12000, 2200), τ2 = (18000, 18000, 3000)
and τ3 = (24000, 24000, 4000), and three normalized processor
speeds 1.0, 0.8 and 0.6. Let a single checkpoint take c = 50 cycles.
As indicated in Section 4.1, VSLP cannot schedule this task set
when one or more faults occur during each job. Here although we
examine the fault occurrence in one hyperperiod, the WCET value
of each task for VSLP remains the same as that in Section 4.1. As a
result, VSLP still cannot schedule this task set if there are any fault
occurrences. On the other hand, HFTT can tolerate more than 10
faults during a hyperperiod. The speed assignment (s1, s2, s3) and
number of checkpoints (m1, m2, m3) for τ1, τ2 and τ3, and total
energy consumption are shown in Table 4.
 Next we show that HFTT saves more energy than VSLP in the
presence of faults when both schemes are feasible. Consider three
tasks τ1 = (12000, 10000, 500), τ2 = (18000, 16000, 1000) and τ3 =
(24000, 22000, 2000), and three normalized processor speeds 1.0,

JFTT
k (s1, s2, s3) (m1, m2, m3) Energy

VSLP

1 (0.8, 0.8, 0.8) (7, 8, 9) 29717
3 (0.8, 1.0, 0.8) (12, 14, 16) 40473
6 (1.0, 1.0, 1.0) (17, 19, 22) 60530

Infeasible

Table 1: JFTT vs. VSLP (Part 1).
k Engy_JFTT Engy_VSLP Engy_JFTT/ Engy_VSLP
1 6522 9360 0.70
2 7362 14040 0.52
3 7981 33280 0.24

Table 2: JFTT vs. VSLP (Part 2).
c Engy_JFTT Engy_VSLP Engy_JFTT/ Engy_VSLP
50 7981 33280 0.24
150 10206 33280 0.31
250 11844 33280 0.36

Table 3: JFTT vs. VSLP (Part 3).
HFTT

k (s1, s2, s3) (m1, m2, m3) Energy

VSLP
1 (0.6, 0.8, 0.8) (3, 3, 4) 21716
4 (0.8, 1.0, 0.8) (5, 6, 10) 32187
10 (1.0, 1.0, 1.0) (10, 14, 19) 47850

Infeasible

Table 4: HFTT vs. VSLP (Part 1).
k Engy_HFTT Engy_VSLP Engy_HFTT/ Engy_VSLP
1 5400 9360 0.58
2 5508 14040 0.39
3 5760 33280 0.17

Table 5: HFTT vs. VSLP (Part 2).

0.8 and 0.6. Let a single checkpoint take c = 100 cycles. The energy
saving for HFTT over VSLP is demonstrated in Table 5.

5. Conclusions
 We have shown how dynamic adaptation for fault tolerance and
power management can be carried out in embedded systems. Fault
tolerance is achieved via checkpointing and power management is
carried out using DVS. We have presented feasibility-of-scheduling
tests for checkpointing schemes under both constant processor
speed and variable processor speed. Two feasibility tests have been
developed for application-level and task-level speed scaling,
respectively. Based on the results of the feasibility analyses, on-line
dynamic speed scaling can be employed to further reduce energy.

References
[1] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive checkpointing in
embedded real-time systems”, Proc. Design, Automation and Test in
Europe Conference, pp. 918-923, 2003.
[2] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors”, Proc. Int. Symp. Low Power
Electronics and Design, pp. 197-202, 1998.
[3] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-
time systems on variable voltage processors”, Proc. Design Automation
Conference, pp. 828-833, 2001.
[4] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig, “Analytic
Models for Rollback and Recovery Strategies in Data Base Systems”, IEEE
Trans. Software Eng., vol. 1, pp. 100-110, March 1975.
[5] A. Ziv and J. Bruck, “An on-line algorithm for checkpoint placement”,
IEEE Trans. Computers, vol. 46, pp. 976-985, September 1997.
[6] S. W. Kwak, B. J. Choi and B. K. Kim, “An optimal checkpointing-
strategy for real-time control systems under transient faults”, IEEE Trans.
Reliability, vol. 50, pp. 293-301, September 2001.
[7] J. W. Liu, Real-Time Systems, Prentice Hall, Upper Saddle River, NJ,
2000.
[8] S. Punnekkat, A. Burns and R. Davis, “Analysis of checkpointing for
real-time systems”, Real-Time Systems Journal, vol. 20, pp. 83-102,
January 2001.

